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We investigate the energy relaxation of hot carriers in a CVD-grown graphene device with a top h-BN layer by driving the devices
into the nonequilibrium regime. By using the magnetic field dependent conductance fluctuations of our graphene device as a
self-thermometer, we can determine the effective carrier temperature 𝑇e at various driving currents 𝐼 while keeping the lattice
temperature 𝑇L fixed. Interestingly, it is found that 𝑇e is proportional to I, indicating little electron-phonon scattering in our device.
Furthermore the average rate of energy loss per carrier 𝑃e is proportional to (𝑇e

2 − 𝑇L
2), suggesting the heat diffusion rather than

acoustic phonon processes in our system. The long energy relaxation times due to the weak electron-phonon coupling in CVD
graphene capped with h-BN layer as well as in exfoliated multilayer graphene can find applications in hot carrier graphene-based
devices.

1. Introduction

Recently, researchers in the graphene community are much
interested in hot carriers in graphene-based systems since
they determine the performance of high-power and high-
frequency electronics, thermal management of electronic
devices, optoelectronic devices, the quantumHall metrology,
and bolometric detectors [1–6]. Most of the hot carrier
graphene devices in the high carrier density limit (the Bloch-
Gruneisen temperature (𝑇BG) > the lattice temperature (𝑇L))
show the dominant cooling power from a weak coupling of
carriers to acoustic phonon processes [7–10], which is repre-
sented by a heat flow power law equation P = Σ(𝑇𝛿e −𝑇

𝛿
L ) [11],

where 𝛿 = 4 is a characteristic exponent, 𝑇e is the carrier tem-
perature, 𝑇L is the lattice temperature, and Σ is the coupling
constant. Furthermore, disordered-enhanced properties in

hot carrier graphene devices revealed the supercollision
cooling processes, where 𝛿 = 3 [12–14]. Recently, hexagonal
Boron Nitride (h-BN) bottom substrate can be a great heat
drained material for disordered graphene so as to extremely
reduce the carrier-phonon scattering via Wiedemann-Franz
law heat diffusion, which is 𝛿 = 2 [15–17]. However, the car-
riers of energy relaxation in such h-BN/disordered graphene
systems with less substrate phonon interactions following the
Wiedemann-Franz law heat diffusion are rarely studied. A
key parameter for discussing the cooling process is the energy
relaxation time (𝜏𝜖), the characteristic time when the thermal
energy is lost by the carriers [18–20].

To date, CVD-grown graphene appears to be a good
candidate for large-scale graphene-based applications. How-
ever, as such a system may not be air stable, it is highly
desirable to cap the CVD graphene with an inert layer so
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Figure 1: (a) Schematic fabrication diagram of a top h-BN/CVD graphene device. (b) The top h-BN/CVD graphene device (sample A) with
a scale bar of 10 𝜇m.

as to experimentally realize stable, large-scale, and scalable
devices. To this end, we have prepared CVD graphene with
a top h-BN layer and studied the hot carrier effects in
such a device. In this report, we studied the conductance
fluctuations and hot carrier effects using a largemeasurement
current (I) so as to raise the effective 𝑇e above 𝑇L on h-
BN/CVDgraphene andmultilayer exfoliated graphene due to
their disordered properties. Based on the self-thermometer
linear properties between 𝑇e and 𝐼 due to Wiedemann-
Franz law heat diffusion, we can investigate energy relaxation
cooling processes under high carrier density limit (𝑇BG > 𝑇L)
between the h-BN/CVD graphene and multilayer exfoliated
graphene for future graphene-based applications. By deter-
mining 𝜏𝜖 from 𝑇e and input power 𝑃e, we can find that
𝜏𝜖 of the CVD graphene with a top h-BN layer is almost
two orders of magnitude longer than those in exfoliated
pristine monolayer/bilayer graphene. Such a result may find
applications in hot carrier graphene-based transistors as a
result of the weak electron-phonon coupling.

2. Experimental Section

2.1. Preparation of the Samples. As shown in the schematic
diagram in Figure 1(a), we used the scotch tape method to
mechanically exfoliate high purity and homogenous h-BN
crystals synthesized by high pressure techniques [21] and
transferred them by Gel-Pak polymer using the viscoelastic
effect [22] on commercial chemical vapor deposition (CVD)
graphene/285 nm SiO2/Si substrate [23]. The CVD graphene
region outside h-BN sheet was etched by oxygen plasma so as
to confine to our CVD graphene region under the h-BN sheet.
CF4 gas was used to etch h-BN sheet protected by photoresist
for 8 terminals and Cr/Au metal depositions as shown in
Figure 1(b).

2.2. Electrical Measurements. An ac driving current from
lock-in amplifiers passed into the source and drain contacts
through the graphene devices for Hall-bar measurements.
The magnetoresistance was measured in a He3 cryostat
equipped with a superconducting magnet.

3. Results and Discussion

Figure 2(a) shows the longitudinal resistivity 𝜌𝑥𝑥 as a function
of magnetic field with fixed current I = 20 nA at different
temperatures that are equivalent to 𝑇L. The conductance
fluctuations are observed, and they decrease as 𝑇L increase
from 𝑇L = 0.32 to 50K, which are typical properties in
disordered mesoscopic graphene [24–27]. Figure 2(a) inset
shows the correspondingHall resistivity at𝑇L = 0.32 K, which
can calculate the carrier density 𝑛A = 3.5 × 1012 cm−2 from
the Hall slope and Hall mobility 𝜇 = 2092 cm2/Vs from
carrier density and zero field resistivity. Figure 2(b) shows the
results of 𝜌𝑥𝑥 at various driving currents 𝐼 from I = 20 nA
to 30000 nA at a fixed 𝑇L of 0.32 K, which reveals similar
conductance fluctuation characteristics by current heating in
the nonequilibrium regime due to the hot carrier effects in
disordered two-dimensional systems [18, 28–31].

By using a conductance fluctuations-based thermometer
between 𝜌𝑥𝑥 (I) and 𝜌𝑥𝑥 (T), we are able to reveal the clear
conductance variations for lattice temperature and current
dependence between B = 0.5 and 3 T by subtracting a smooth
background that avoids the zero field weak localization peak
and high field Shubnikov-de Haas-like oscillations as shown
in Figures 3(a) and 3(b) [13]. Hence, we determine the
root mean square (RMS) conductance fluctuation (𝛿𝑔rms, in
units of e2/h) for every 𝛿𝑔rms (𝑇L) and 𝛿𝑔rms (I) data set
as a common graph (see Supporting Information (available
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Figure 2: (a) Magnetoresistivity 𝜌𝑥𝑥 (B) at various 𝑇L for sample A. The inset shows the Hall resistivity 𝜌𝑥𝑦 (B) at 𝑇L = 0.32 K. (b)
Magnetoresistivity 𝜌𝑥𝑥 (B) at various driving currents 𝐼 at fixed 𝑇L = 0.32 K for sample A.
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Figure 3: (a) Conductance fluctuations in sample A as a function of magnetic field at various lattice temperatures with fixed I = 20 nA. (b)
Conductance fluctuations in sample A as a function of magnetic field at various driving currents for 𝑇L = 0.32 K.

here)) by averaging conductance fluctuations over the range
of 𝐵 so as to assign an effective 𝑇e to the driving current
as shown in Figure 4(a) [13, 18]. Interestingly, 𝑇e shows a
linear dependence on 𝐼. According to the seminal work done
by Baker and coworkers about the energy transfer between
carriers and the lattice [31], the following relation can be
found:

𝑇e ∝ 𝐼
𝛼, (1)

where 𝛼 = 2/(p + 2) and 𝑝 is the exponent for the inelastic
scattering rate 𝜏in

−1 ∝ 𝑇𝑝. Therefore, Figure 4(a) shows
that 𝑇e (I) of our sample A follows (1) with 𝑝 ≈ 0 and
𝛼 ≈ 1, which suggested little carrier-phonon scattering
in two-dimensional material heterostructure systems [26].
Furthermore, one would be interested in whether the heat
dissipation was transferred by another mechanism rather
than carrier-phonon scattering. Under the low-temperature
limit (𝑇L < 𝑇BG), 𝑇BG = 2ℎ𝑠𝑘F/𝑘B, where 𝑠 is the sound
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Figure 4: (a) Effective 𝑇e versus driving current 𝐼 in sample A. (b) 𝑃e as a function of (𝑇e
2 − 𝑇L

2) for sample A and at 𝑇L = 0.32 K.

velocity and 𝑘F is the Fermi radius. For graphene systems (s
= 2.1 × 104ms−1), 𝑇BG ∼ 54n1/2 K ≅ 93.4 K with the carrier
density 𝑛 = 3.5 in units of 1012 cm−2 in sample A [13, 32].The
energy loss (𝑃e), the average rate of energy loss per carrier, is
usually expressed to the carrier and lattice temperatures as

𝑃e = 𝐴 (𝑇
𝛽
e − 𝑇
𝛽
L ) , (2)

with a constant 𝐴 and a characteristic exponent 𝛽. In general
graphene systems, 𝛽 ≈ 3 suggests the supercollision cooling
mechanism in disordered systems [13, 18, 33] and 𝛽 ≈
4 suggests the two-dimensional acoustic phonon cooling
processes in clean systems [34, 35]. Particularly, 𝛽 ≈ 2,
the heat diffusion described by the Wiedemann-Franz law,
was found in graphene on bottom h-BN substrate systems,
where bottom h-BN substrate acts as a thermal conduction
layer, effectively reducing the electron-phonon coupling [14–
16]. Such interesting bottom h-BN substrate underneath
graphene can change graphene heat transport mechanism
from electron-phonon interactions (𝛽 ≈ 3 ∼ 4) to
heat diffusion (𝛽 ≈ 2). One might be interested in what
heat transport mechanism will be in encapsulated graphene
between bottom insulating SiO2 and top h-BN sheet as our
sample A rather than traditional graphene on h-BN substrate
[14–16]. Based on the work of Baker et al. [31], 𝛽 = p +
2, which suggested 𝛽 in sample A should be close to 2
since the linear relation between 𝑇e and 𝐼 is p≈ 0 (1 = 𝛼 =
2/(p + 2)). Apparently, our results in sample A are highly
consistent with this speculation for 𝛽 ≈ 2 as shown in
Figure 4(b), where 𝑃e = 𝐼2𝑅𝑥𝑥/𝑛𝑊𝐿 (𝑊 and 𝐿 are the width
and length of our sample A, resp.). Interestingly, the heat
transfer mechanism in our sample A with top h-BN sheet
on graphene/SiO2 was dominated by heat diffusion (𝛽 ≈ 2),
which is the same as traditional graphene/h-BN substrate
devices [14–16]. Such interesting results suggest that the top
h-BN sheet coupled with graphene is strong heat transfer
medium in comparison with other coupled materials, like
SiO2 or air. Also, such structures in the top h-BN sheet on
graphene not only protected graphene without air molecular

adsorbing doping [2–36], but also screened graphene from
electrostatic force [37, 38], a great advancement for graphene-
based devices.

In order to further discuss the linear relation between
𝑇e and 𝐼 that indicates little carrier-phonon scattering in
our sample A, we fabricate multilayer exfoliated graphene
(sample B) that showed the same linear relation between
𝑇e and 𝐼 by zero field resistance as a thermometer and
conductance fluctuations due to its disordered property as
in our previous reports [23–26]. Again, we are able to
measure the conductance fluctuations for temperature and
current dependence as shown in Figure 5(a) and inset [13].
Consequently, we found the linear relation between 𝑇e and
𝐼 by utilizing 𝛿𝑔rms (𝑇L) and 𝛿𝑔rms (I) as a thermometer
for determining 𝑇e (see Supporting Information) [13] as
shown in the inset of Figure 5(b), which suggested p≈ 0
and 𝛽 ≈ 2. Under the low-temperature limit (𝑇L < 𝑇BG),
𝑇BG ∼ 54𝑛1/2 K ≅ 188.6 K with the carrier density 𝑛 =
12.2 in units of 1012 cm−2 in sample B [13, 32]. Consistently,
𝑃e is proportional to (𝑇2e − 𝑇

2
L) in sample B as shown in

Figure 5(b), which belonged to Wiedemann-Franz law heat
diffusion and corresponded to the transport situation for little
carrier-phonon scattering for 𝛼 ≈ 1 [7, 26]. Interestingly, the
multilayer exfoliated graphene (sample B) has the same heat
transfer mechanism (𝛽 ≈ 2) as the h-BN/graphene (sample
A) systems [14–16].

Although the heat transfer mechanism of multilayer
exfoliated graphene is the same as h-BN/CVD graphene for
heat diffusion (𝛽 ≈ 2), the energy relaxation time can describe
this cooling process about the typical time on which energy
is lost from carriers [39, 40]. Therefore, the energy relaxation
time can be expressed by

𝑃e =
𝑘B (𝑇e − 𝑇L)
𝜏𝜖
. (3)

Figure 6 compares the energy relaxation time 𝜏𝜖 between
the h-BN/CVD graphene (sample A) and the multilayer
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Figure 5: (a) Conductance fluctuations in sample B as a function of magnetic field at various 𝑇L with fixed I = 20 nA. The inset shows
conductance fluctuations in sample B as a function of magnetic field with various driving currents at fixed 𝑇L = 0.32 K. (b) 𝑃e as a function of
(𝑇e
2 − 𝑇L

2) for sample B and at 𝑇L = 0.32 K. The inset shows effective 𝑇e versus driving current 𝐼 in sample B.
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Figure 6: (a) Comparison of 𝜏𝜖 (𝑇e) versus 𝑇e on a log-log scale
for sample A (h-BN/CVD graphene) and sample B (multilayer
graphene).

exfoliated graphene (sample B). Interestingly, we could obvi-
ously find that 𝜏𝜖 of h-BN/CVD graphene (sample A) is
about two orders of magnitude faster than that of multilayer
graphene (sample B). Both of these two samples are the
same n-type of carrier density and far from the Dirac point,
which cannot be ascribed to the fast energy relaxation of hot
carriers near the Dirac point of graphene [18]. These results
suggest that the carrier-phonon scattering is absent in the
multilayer graphene and the h-BN/graphene. The extremely
long energy relaxation times in both devices (at least two

orders of magnitudes longer than those in pristine exfoliated
graphene [27, 28] and graphene on SiC [30, 34]) can be
advantageous for applications in graphene-based hot carrier
transistors [41] since carriers can maintain their high kinetic
energy (and hence the high effective temperature) with a
relatively low driving current.

4. Conclusion

We have studied conductance fluctuations and hot carrier
effects caused by current heating on h-BN/CVD graphene
and multilayer graphene as a self-thermometer. It has been
shown that 𝑇e (𝑃e) is linearly proportional to I (𝑇e

2 − 𝑇L
2)

in both of the disordered graphene devices, suggesting the
little electron-phonon scattering and heat diffusion due to
Wiedemann-Franz law.The extremely long energy relaxation
time may find applications in graphene-based hot carrier
devices. Such a resultmay be useful for othermaterial systems
[42, 43].
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