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Non-monotonic Magnetoresistivity in Two-dimensional Electron Systems
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The connection being studied is the one between the non-monotonic magnetoresistivity (MR) and
the electron-electron interaction (EEI) correction in weakly-disordered two-dimensional electron
systems (2DESs) in the ballistic region kBTτ/~ > 1, where kB , T , τ , and ~ are the Boltzmann
constant, the temperature, the scattering time, and the reduced Planck constant, respectively. At
zero magnetic field, a transition of the resistivity ρ(T ) from the insulating region dρ/dT < 0 to
the metallic region dρ/dT > 0 is observed. The MR shows a maximum, and with increasing T ,
the position of the MR maximum in B increases for both GaAs-based (sample A) and GaN-based
(sample B) 2DESs. Our data suggest that the EEI plays an important role in such a non-monotonic
MR effect and in the temperature dependence of the resistivity.
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I. INTRODUCTION

The existences of a critical metal-insulator transition
at zero magnetic field and of a non-monotonic magne-
toresistivity (MR) [1–8] in two-dimensional electron sys-
tems (2DESs) have been extensively studied over the
last few decades. Temperature-dependent corrections to
the conductivity of 2DESs due to electron scattering by
Friedel oscillations and the interaction constant Fσ

0 have
been considered to support such a non-monotonic metal-
insulator transition and non-monotonic MR [9–14]. In
2DESs, the carriers are confined to move in a plane with
a random potential. As the temperature is reduced to
the diffusive region (kBTτ/~ < 1), a logarithmic increase
of the resistivity (insulating behavior) is expected. Ac-
cording to the scaling theory of localization considering
relatively weak Coulomb interactions, experimental re-
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sults are in agreement with theoretical predictions that
a weak electron-electron interaction (EEI) could increase
the localization [15]. Moreover, in weakly-disordered sys-
tems kF l � 1, (where kF and l are the Fermi momentum
and the mean free path, respectively), experiments have
shown that for strong coupling samples, with increasing
electron density, the resistivity can cross from a region
where dρ/dT < 0 (insulating behavior) to a region where
it decreases with decreasing temperature, i.e., dρ/dT > 0
(metallic behavior) [1–6,16–18].

The two mechanisms in the theory of quantum correc-
tions to the Drude conductivity are the weak localization
(WL) contribution (normally negative) and the EEI con-
tribution. The contribution of the EEI depends on the
value of the interaction constant Fσ

0 [4,17]. The inter-
action constant Fσ

0 can be understood as the ratio of
the exchange to the kinetic energy, and it can be found
from measurements of the magnetic susceptibility [19].
Theories predict that the non-monotonic resistivity ρ(T )
depends on a negative Fσ

0 . The densities studied also
play an important role in such a metal-insulator transi-
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tion. A window for a crossover exists when the electron
density of a 2DES is varied. At relatively high densi-
ties, one can consider coherent electron scattering on the
modulated density of electrons caused by an impurity,
and one can attribute the metallic state to temperature-
dependent impurity scattering caused by a modulation
of the screening of the impurity potential [20,21].

The WL contribution comes from the interference of
electron waves propagating in opposite directions along
closed paths, and it depends on the temperature and the
magnetic field. The WL correction is proportional to -
ln(τφ). Here, τφ is the phase relaxation time, τφ ∝ T−P ,
with p ∼ 1 in the dirty limit, and it is the timescale
for a conduction electron to stay in a given, exact, one-
electron energy eigenstate in the presence of static impu-
rities. For 2DESs, small-energy-transfer electron-eletron
(e-e) scattering is the dominant dephasing process, giv-
ing rise to 1/τφ,ee ∝ T [22,23].

Recently, the non-monotonic MR of 2DESs in a per-
pendicular magnetic field B has been widely discussed [7,
8]. According to the classical Drude model, the longitu-
dinal resistivity is independent of the perpendicular mag-
netic field [24]. However, a B-dependent MR property
has been observed in many experiments [25–30]. Two
mechanisms, WL and EEI, for quantum corrections to
the Drude conductivity have been well established and,
thus, can be used to explain the B-dependent MR in
the diffusive region. The theory of EEI with short-range
potential fluctuations has been widely discussed. The
EEI correction in the diffusive region is proportional to
ln(~/kBTτ) and grows in amplitude as the temperature
is decreased [4,31]. Zala et al. developed a theory for the
temperature dependence of the conductivity by consider-
ing Friedel oscillations [11,12] to enhance the backscat-
tering probability. Sedrakyan and Raikh (SR) showed
that double scattering by Friedel oscillations in the bal-
listic region gave rise to a positive MR in a weak magnetic
field, which could explain the non-monotonic MR [13].

II. EXPERIMENTS AND DISCUSSION

We used two different types of 2DESs, GaAs-based
(sample A) and GaN-based (sample B) 2DESs, to study
the non-monotonic, temperature-dependent resistivity
and the non-monotonic magnetoresistivity. Sample A is
an Al0.33Ga0.67As/GaAs heterostructure grown by using
molecular beam epitaxy (MBE). A standard Hall bar is
mesa-etched with a channel width of 80 µm on this sam-
ple. The carrier concentration n and the electron mobil-
ity µ are 2.67 × 1011 cm−2 and 82300 cm2/Vs, respec-
tively, at 4 K. Sample B is grown by using metal-organic
chemical-vapor deposition (MOCVD) on a sapphire sub-
strate with the following layer sequence: a buffer layer,
a 2.8-µm undoped GaN layer, a 67-nm Si-doped GaN
layer, a 4.5-nm undoped GaN layer, a 3.5-nm undoped
AlGaN layer, a 21-nm Si-doped AlGaN layer, a 3.5-nm

Fig. 1. (Color online) Temperature-dependent magnetore-
sistivity for both GaAs-based (sample A) and GaN-based
(sample B) 2DESs.

undoped AlGaN layer and a 3 nm GaN cap layer. The
longitudinal and the Hall MR were measured on Hall
bars with length-to-width ratios of 5. The typical value
of the current flow was 1 µA. At T = 4 K, the electron
density was 1.23 × 1013 cm−2, and the mobility was 3128
cm2/V s.

In a magnetic field, the classical Drude conductivity
tensor has the following form:

σD =
neµ

1 + µ2B2

(
1 µB

−µB 1

)
, (1)

where n and µ are the electron density and mobility,
respectively. A general formula for the longitudinal
magneto-conductivity with correction terms is given by
the expression

σxx = σ0 + δσee
xx + δσWL . (2)

Here, σ0 = neµ is the Drude conductivity at a zero mag-
netic field; δσee

xx and δσWL are the EEI correction term
and the WL correction term, respectively. One specific
feature of the EEI in the diffusive limit is the following:

δσee
xx = − e2

2π2~

[
1 + 3

(
1− ln(1 + Fσ

0 )
Fσ

0

)]
ln

(
~

kBTτ

)
.

(3)

Figure 1 shows that both samples A and B exhibit a
non-monotonic variation of the magnetoresistivity with
increasing magnetic field. Moreover, a transition of
the temperature-dependent resistivity from an insulator
phase (dρ/dT < 0) to a metallic phase (dρ/dT > 0) is
observed in the ballistic region kBTτ/~ > 1, as shown
in Fig. 2. Because σ0 � δσee

xx, the normalized magne-
toresistivity can be derived by inverting the conductivity
matrix in a weak magnetic field (µB � 1) and has the
form

∆ρxx(B, T )/ρ2
0 ≈ (1− µ2B2)δσee

xx . (4)
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Fig. 2. Transition of the resistivity ρ(T ) from the insulator
region dρ/dT < 0 to the metallic region dρ/dT > 0 when
the temperature is increased. Top panel: sample A. Bottom
panel: sample B.

Fig. 3. (Color online) Renormalized resistivity [ρ(B, T )−
ρ(0, T )]/ρ2(0, T ) versus magnetic field for sample B.

From Eq. (4), the negative magnetoresistivity varies log-
arithmically with the temperature in the diffusive limit.
For sample B (kF l ∼ 160 � 1), the normalized MR
curves are shown in Fig. 3. For weak magnetic fields,
µBtr < 1/kF l, one can see that applying a magnetic field
perpendicular to the plane of a 2DES suppresses coher-
ent back-scattering and that the suppression of the WL
contribution gives rise to a negative magnetoresistivity.

The magnitude of the magneto-conductivity correction
due to weak localization in two dimensions was quantified
by Hikami et al. [32]. The magneto-conductivity in the
absence of spin relaxation under the assumption that
electron transport is diffusive is given by

∆σWL = σxx(B)− σxx(B = 0)

= − e2

2π2~

[
Ψ

(
1
2

+
Bφ

B

)
−Ψ

(
1
2

+
B0

B

)]
, (5)

where Ψ is the digamma function. B0 and Bφ are char-
acteristic magnetic fields related to the transport scat-

Fig. 4. (Color online) Dephasing rate is proportional to
temperature. That is, the dephasing effect is dominated by
electron-electron scattering.

tering rate and to the phase relaxation rate, respectively.
An analysis of the WL curves has been found, in turn,
to provide quantitative information on the electron de-
phasing mechanisms (Bφ = ~/4πDτφ) [32–34]. At low
temperatures, when the dephasing effect is dominated
by electron-electron scattering, the phase coherence rate
1/τφ in a two-dimensional system is given by [33,34]

1
τφ

=
kBT

2πN0D~2
ln(πDN0~) , T <

~
kBτ

, (6)

1
τφ

=
πk2

BT 2

2~EF
ln

(
EF

kBT

)
, T >

~
kBτ

, (7)

where N0 is the two-dimensional density of states and D
is the diffusion constant.

Figure 4 shows that the dephasing rate is proportional
to the temperature; that is, the dephasing effect is domi-
nated by electron-electron scattering. As shown in Fig. 3,
δσee

xx changes sign from positive to negative as the tem-
perature increases when Btr < B < 1/µ.

In the Sedrakyan Raikh theory [13], the MR is found
to arise from scattering of electrons on Friedel oscilla-
tions of the electron density around impurities. Double
scattering from the field-modified Friedel oscillations was
demonstrated to give a magnetoresistivity in the ballistic
region (δσee

xx < 0) [7]. Friedel oscillations are limited by
the length rT = νF /2πT rather than by the mean free
path l. We plot the length rT and the mean free path l
in Fig. 5.

When Friedel oscillations become important for rT �
l, a positive MR is found. We show the temperature
dependence of the magnetoresistivity in fixed magnetic
fields in Fig. 6(a). The value of ρ(T ) at a fixed mag-
netic field is larger than that at zero magnetic field
ρ(B = 0, T ), and the negative MR disappears when the
temperature is higher than 30 K. The consequence of
such for the EEI is related to the value of the inter-
action constant Fσ

0 , which depends on the interaction
strength. Zala et al. [11] showed that the correction
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Fig. 5. (Color online) Mean free path and limit length of
Friedel oscillations rT versus T . At T = 19 K, kBTτ/~ ∼ 1
for sample B.

was almost always monotonic, except for a narrow re-
gion −0.45 < F σ

0 < −0.25. Unlike the correction in the
diffusive limit, the correction to the conductivity could
change depending on the value of Fσ

0 . This is due to com-
petition between the universal Fock correction and the
coupling specific Hartree contribution. For a stronger
interaction, the Hartree correction should be modified
to include higher-order processes [11,12]. In the diffusive
region, using Eq. (3), we have obtained the slope that al-
lows us to calculate the Hartree factor Fσ

0 = −0.105 for
temperatures lower than 4 K [28]. Note that an extra
factor for the correction to conductivity, δσee

xx, has been
included in some papers [9, 11] with kF l � 1 systems.
The corresponding expression can be expressed as

δσee
xx = − e2

2π2~

[
1 + 3

(
1− ln(1 + Fσ

0 )
Fσ

0

)]
×

[
ln

(
~

kBTτ

)
+ ln

(
kF l

2

)]
= − e2

2π2~

[
1 + 3

(
1− ln(1 + Fσ

0 )
Fσ

0

)][
ln

(
EF

kBT

)]
(8)

The reason for such a discrepancy is that the mean-
free-path term and the Friedel oscillations can modify the
transport mobility and, therefore, contribute not only to
the σxx component but also to the σxy component [9,35].

δσee
xx vs ln(kBT/EF ) is plotted in Fig. 6(b), and the

slope gives the Hartree interaction constant. Our data
show that such a linear relation could probably be ex-
tended to the ballistic region for kF l � 1 systems. Zala
et al. [11] show that in the ballistic region, the tem-
perature dependence of the conductivity is still governed
by the same physical processes as the Altshuler-Aronov
corrections - electron scattering by Friedel oscillations.

Both WL (quantum interference) and electron scat-
tering by Friedel oscillations (backscattering) increase

Fig. 6. (Color online) (a) Temperature dependence of the
magnetoresistivity in fixed magnetic fields. The red dashed
line is for a magnetic field of 2 T, which is chosen in the region
at Btr (∼0.02 T) < B < 1/µ(∼ 3T ) and the blue dashed line
is for a magnetic field of 5 T, which is near to the magnetic
field of the local maximum of MR. (b) δσ vs. ln(kBTτ/EF )
plot. The slope gives the Hartree interaction constant.

the resistivity [36–42]. With decreasing temperature, the
metallic state is broken due to strong backscattering. For
our samples, this strong backscattering due to Friedel
oscillations happened in the ballistic region. However,
as the temperature was decreased, the restrictive length
for Friedel oscillations increased; thus, the backscatter-
ing probability due to Friedel oscillations decreased, but
the quantum interference increased. Moreover, as the
magnetic field was increased, the quantum interference
decreased, but the backscattering probability (by Frei-
del oscillations) increased due to the curving scattering
length caused by the magnetic field.

III. CONCLUSION

We have reported a novel non-monotonic magnetore-
sistivity in both GaAs-based (sample A) and GaN-based
(sample B) 2DESs in the ballistic region. A plot of
the dephasing rate versus temperature shows electron-
electron scattering to be dominant. A positive MR ap-
pears when the restrictive length of Friedel oscillations



Non-monotonic Magnetoresistivity in Two-dimensional Electron Systems – Yi-Ting Wang et al. -1507-

becomes smaller than the mean free path, as the theo-
ries predict. Our results show a transition of resistivity
ρ(T ) from the insulator region dρ/dT < 0 to the metallic
region dρ/dT > 0 in the ballistic region. The observa-
tion of a critical metal-insulator transition and a non-
monotonic magnetoresistivity in 2DESs should be con-
sidered along with electron scattering by using Friedel
oscillations and the interaction constant Fσ

0 . Both the
density (Friedel oscillations) and the interaction constant
in systems with long mean free paths play important
roles in such non-monotonic quantum transport.
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