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Abstract
A graphene-MoS2 (GM) heterostructure based diode is fabricated using asymmetric contacts to
MoS2, as well as an asymmetric top gate (ATG). The GM diode exhibits a rectification ratio of 5
from asymmetric contacts, which is improved to 105 after the incorporation of an ATG. This
improvement is attributed to the asymmetric modulation of carrier concentration and effective
Schottky barrier height (SBH) by the ATG during forward and reverse bias. This is further
confirmed from the temperature dependent measurement, where a difference of 0.22 eV is
observed between the effective SBH for forward and reverse bias. Moreover, the rectification ratio
also depends on carrier concentration in MoS2 and can be varied with the change in temperature as
well as back gate voltage. Under laser light illumination, the device demonstrates strong opto-
electric response with 100 times improvement in the relative photo current, as well as a
responsivity of 1.9 AW−1 and a specific detectivity of 2.4×1010 Jones. These devices can also be
implemented using other two dimensional (2D) materials and suggest a promising approach to
incorporate diverse 2D materials for future nano-electronics and optoelectronics applications.
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1. Introduction

Graphene and other two dimensional (2D) materials have
recently attracted great attention in the research community for
various electronics applications, as well as for fundamental sci-
ence and applied physics [1, 2]. Their unique properties, like
atomic scale thickness, strong gate modulation and mechanical

flexibility, make them a strong candidate for future electronics
[3, 4]. Moreover, atomically thin layers of different 2D materials
can be stacked to form different combinations of heterostructures
to achieve desired properties for various applications [5, 6]. The
operation of various high performance devices, like tunneling
transistors, [7] vertical transistors [8], inverters [9], diodes [10]
and ambipolar transistors [11] has already been demonstrated
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based on 2D materials. A diode is one of the most important
electronics devices with the main feature of rectifying output
characteristics. Typical semiconductor diodes are mostly fabri-
cated by selective doping techniques like diffusion or ion
implantation of dopants. However, to fulfill the requirement of
ultra-fast and low power modern electronics, channel size is
reducing drastically, which puts severe limitations on the fabri-
cation and doping techniques for sub-nanoscale devices. There-
fore, multiple new configurations of diodes based on 2D
materials have been proposed and studied. These studies include
diodes fabricated using surface and plasma doping techniques
[12, 13]. Liquid gates, asymmetric contacts and split gates have
also been used to achieve diode operation in 2D materials
[14–17]. Further, the van der Waal heterostructure of different 2D
materials have also shown diode like properties. These hetero-
structures include BP/MoS2 [18], MoS2/WSe2 [10], InAs/WSe2
[19], and graphene/MoS2 (GM) [20, 21]. Because of semi-
metallic nature of graphene, GM heterostructure based diodes
show insignificant rectification ratio [20, 21], which is one of the
most important parameter to determine the performance of a
diode. This is because graphene form better contact with MoS2 as
compared to high barrier metal contact and the device operates
like Schottky diode due to this asymmetry in contacts. As both
graphene and MoS2 are the most attractive 2D materials due to
their interesting electrical, optical and energy band characteristics,
therefore improving the performance of GM diode would find
wide applications in electrical and optical devices. In this work,
we have fabricated a GM diode by using different contacts
materials to MoS2 flake i.e., graphene contact on one side and the
metal contacts on the other side. The performance of the fabri-
cated diode is further improved by incorporating an asymmetric
top gate (ATG) to modulate the barrier height in sync with the
polarity of the applied bias. After the incorporation of an ATG
structure, the rectification ratio of the device increases from 5 to
105 and also affects the relative photo current, which shows a
selective improvement of two orders of magnitude in this ATG-
GM diode. The proposed configuration can also be implemented
to improve the characteristics of diodes based on other 2D
materials and heterostructures.

2. Results and discussions

Figure 1(a) is the schematic drawing of GM self-gating diode
in which graphene contact is used on one side of MoS2 while
metal (Cr/Au) contact is used on the other side. The device is
fabricated by first exfoliating MoS2 from a commercial bulk
crystal on a silicon substrate capped with 300 nm SiO2 using
the standard mechanical exfoliation method. Similarly gra-
phene is also exfoliated and suitable flakes are selected using
optical microscope and transferred on top of MoS2 using the
polymer assisted transfer technique. Electrodes pattern is
made by electron beam lithography followed by metal
(Cr/Au 10/30 nm) deposition in electron beam deposition
chamber. Similar procedure is adopted to transfer h-BN on
top of the device and the top metal gate, ATG, is deposited in
such a way that it is connected with metal contact of MoS2 as
well, as illustrated in figure 1(a). Graphene and MoS2 flakes

were characterized by Raman spectroscopy using a 532 nm
laser under ambient conditions as shown in figure 1(b). MoS2
Raman spectrum comprise of signature MoS2 peaks: E2g and
A1g at frequencies of 383 cm−1 and 405 cm−1, respectively
[22]. The difference of peak frequencies (22 cm−1) indicates
that MoS2 thickness is more than four layers, [22] which is
further confirmed by atomic force microscopy (AFM) and
comes out to be 4.2 nm (six layers) as shown in figure S1,
available online at stacks.iop.org/NANO/29/395201/mmedia.
Likewise, the Raman spectrum of graphene is comprised of
signature graphene peaks G and 2D, at frequencies of 1582 cm−1

and 2680 cm−1, respectively [23]. Graphene and h-BN thickness
is also confirmed by AFM and comes out to be 1.5 nm (five
layers) and 22 nm, respectively, as shown in figure S1. Further,
MoS2 channel length and width are 7 μm and 3μm, respectively.

Figure 1(c) is the output characteristics of GM device
after h-BN transfer and before the deposition of the top gate at
different back gate voltages, Vbg and a rectification ratio of
∼5 can be seen in the current–voltage characteristics. This
rectification is due to presence of asymmetric contacts to
MoS2 layer, as the graphene contact exhibits less contact
resistance compared to metal contact because of low barrier at
the GM interface [24, 25]. However, after the deposition of
top gate, GM device exhibits significantly higher asymmetry
(Ion/Ioff) of 10

5 in the output characteristics, where Ion is the
device current at Vd=−2 V and Ioff is the device current at
Vd=2 V as seen from figure 1(d). This increase in the rec-
tification ratio after the deposition of top gate can be
explained with the help of schematics in figures 2(a) and (b).

Figure 2 explains the mechanism behind the asymmetric
transport based on the fact that under high drain voltage, the
device current is mainly affected by the barrier at injection
contact (source electrode only) [26, 27]. During forward bias,
as shown in figure 2(a), the injection of electrons in MoS2 is
from the graphene side, as the graphene electrode is negative
while the other metal electrode is positive. The ATG will
generate positive electric field to accumulate electrons in the
MoS2 near the drain electrode, thus making it highly con-
ducting. This accumulation of electrons in MoS2 combined
with the injection of electrons from the less resistive graphene
contact results in high channel current as shown in figure 2(a).
During reverse bias, graphene electrode is positive while the
metal electrode and ATG is negative. In this case, the injec-
tion of electrons in MoS2 is from metal electrode, however,
because of negative bias, the ATG will generate negative
electric field which leads to the depletion of electrons in
MoS2. This depletion not only makes the channel more
resistive but also results in increased effective Schottky bar-
rier height (SBH) for electron injection. Although, for a
particular metal and semiconductor, SBH is fixed, however,
effective SBH can vary with the change in carrier con-
centration. This change in carrier concentration in the channel
can vary the depletion width at metal–semiconductor interface
which affects the injection of carriers. The carrier injection
consists of three main components: thermionic emission,
thermionic field emission and tunneling component, of which,
the last two components vary exponentially with change in
depletion width. This variation leads to an observed change in
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Figure 1. (a) Schematic of the GM self-gating diode, (b) Raman spectra of MoS2 and graphene, (c) output characteristics of GM diode before
the incorporation of ATG (semi-logarithmic scale), (d) output characteristics of GM diode after the deposition of ATG (semi-logarithmic
scale).

Figure 2. (a) Schematic and band diagram showing contacts polarity and electron accumulation in MoS2 during forward bias, (b) schematic
and band diagram showing contacts polarity and electron depletion in MoS2 during reverse bias.
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the measured SBH also known as effective SBH. Therefore,
during reverse bias, resistive channel combined with increased
effective SBH at metal–MoS2 interface results in highly reduced
channel current as seen in figure 1(d).

We have further validated this explanation of variable
SBH from the temperature dependent measurement by
extracting the effective SBH during forward and reverse bias.
The output characteristics of the device are measured at dif-
ferent Vbg, in a temperature range of 230–350 K. Equation (1)
has been used to extract the effective SBH [26, 28]:
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In this equation, I is the total current, A is the area, A* is
the modified Richardson constant, Øb is the effective SBH, Vd

is the drain voltage, q is the electron charge, kB is Boltzmann
constant and T is temperature in Kelvin. We measured the
device current at different temperatures and the effective SBH
is extracted from the slope of linear fit of ln(I/T3 /2) versus
1/T. The extracted values of effective SBH at different Vbg is
shown in figure 3(a).

It can be seen from figure 3(a) that effective SBH for
forward bias is much less than that of the reverse bias. This
difference in effective SBH validates the previous explanation
where rectification in the I–V characteristics has been attrib-
uted to the accumulation and depletion effect of ATG on the
carrier concentration and thus the effective SBH. Another
important observation in figure 3(a) is that effective SBH of
forward as well as reverse bias reduces with an increase in
Vbg. However, the rate of change for forward bias is less than
that of reverse bias and therefore, the difference between the
two also reduces with increasing Vbg. The difference in
effective SBH for forward and reverse bias at Vbg =0 V is
around 0.22 eV, which reduces to around 0.12 eV at Vbg

=14 V. This is due to the fact that the increase in electron
concentration in the channel with Vbg, cancels out the incre-
ment in the effective SBH due to ATG, therefore the effective

SBH decreases at a higher rate in the reverse bias (at the
metal–MoS2 contact) as compared to forward bias (GM
contact).

This trend also appears in figure 3(b), where the on/off
ratio of the device substantially changes with variations in
both temperature, as well as Vbg. The increase in either Vbg or
temperature results in an increased electron concentration in
the channel and subsequently, reduction of effective SBH. As
shown in figure 3(a), an effective SBH in reverse bias is more
sensitive to carrier concentration and reduces at a rate faster
than that of forward bias. Therefore, the on/off ratio of the
device also reduces with increasing temperature as well as
Vbg, as seen in figure 3(b). This unique dependence of on/off
ratio on the carrier concentration modulated by both ATG and
back gate can also be utilized to improve the opto-electrical
characteristics, where the carrier concentration is modulated
by the photo-generated electron–hole carriers.

Figure 4 presents the relative photo current of device,
which is an important parameter to evaluate the performance
of any optical sensor. The GM device is illuminated by a light
source of 655 nm and the relative photo current is obtained by
first subtracting the dark current from total current under laser
illumination and then dividing the difference with the dark
current (Iph =Ilaser −Idark, where Ilaser is total current under
illumination). Before deposition of top gate, as shown in
figure 4(a), relative photo current is of the order of 103.
However, after the deposition of ATG, as shown in
figure 4(b), relative photo current is increased to 105. As the
illumination of laser results in the generation of electron–hole
pairs in the MoS2, therefore, the carrier concentration in the
channel increases under illumination and as discussed earlier,
under high carrier concentration, the asymmetric gating effect
of top gate becomes less effective. This results in high current
flowing in device under reverse bias as well, which ultimately
leads to higher value of relative photo current. This increase
in relative photo current by 100 times in the same device after
deposition of ATG, reflects the advantage of the proposed
device for optoelectronics applications. Further, we have

Figure 3. (a) Effective SBH obtained from temperature dependent measurement at different back gate voltages during forward and reverse
bias, (b) plot between rectification ratio of device and temperature at different back gate voltages.
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calculated the responsivity and specific detectivity of our
ATG-GM device, which are the key features of any optical
sensor. The maximum obtained value of responsivity is
1.90 AW−1 at Vd=−2 V, which is obtained from the ratio
of the photo current to the incident laser power, R=Iph/Pin

[12, 16, 20]. Specific detectivity is mostly used to determine
optical sensor sensitivity and the maximum obtained value of
detectivity is 2.4×1010 Jones, calculated by using
D*=A1 /2/NEP, where A is the illuminated area and NEP is
the noise equivalent power, NEP=(2qI)1/2/R.

3. Conclusions

In conclusion, we have demonstrated the operation of a
doping free self-gating diode where high rectification ratio is
achieved by asymmetric modulation of carrier concentration
and effective SBH by the top gate. The rectification ratio of
the device varies with carrier concentration in MoS2 and can
be controlled by changing temperature and back gate voltage.
The ATG-GM device also evinces a strong opto-electric
response, when illuminated by light source, and a 100 times
improvement has been observed in relative photo current
compared to the pristine GM heterostructure.
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