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In this paper we review measurements on a modulated one-dimensional (1D) ballistic
channel. We have designed a novel 1D channel with three separate and independently con-
tacted overlaying finger gates. By changing the applied voltages on the overlaying gate fingers,
we are able to vary the potential modulation in a ballistic 1D channel. Our experimental re-
sults fall into two categories. (i) We show that “the 0.7 structure” [K. J. Thomas et al., Phys.
Rev. Lett. 77, 135 (1996)] persists despite a change of the lateral confinement strength by a
factor of 2. We have also shown that the 0.7 structure present in two 1D channels in series
behaves like a single 1D channel, demonstrating that the 0.7 structure is not a transmission
effect through a ballistic channel at zero in-plane magnetic field. (ii) In our versatile system,
an open quantum dot can be electrostatically defined by a split-gate, and two overlaying finger
gates which introduce entrance and exit barriers to the dot. In this case, we observe continu-
ous and periodic oscillations superimposed upon ballistic conductance steps at zero magnetic
field. We ascribe the observed conductance oscillations, when the conductance through the
dot G exceeds 2e2=h, to experimental evidence for Coulomb charging effects in an open dot
[C.-T. Liang et al., Phys. Rev. Lett. 81, 3507 (1998)]. This is supported by the evolution
of the oscillatory features for G > 2e2=h as a function of both temperature and barrier trans-
parency. Moreover, we present clear experimental evidence that coherent resonant transport
and Coulomb charging effects co-exist in our system.

PACS. 73.20.Dx – Electron states in low-dimensional structures.
PACS. 73.40.Gk – Tunneling.

I. Introduction

Using the now well-established “split-gate” technique [1], it is possible to define a one-
dimensional (1D) channel within a two-dimensional electron gas (2DEG). If the elastic scattering
length is longer than the 1D channel length, one may observe ballistic conductance plateaux
quantised in units of 2e2=h [2, 3] at zero magnetic field, with the factor of 2 from the electron
spin degeneracy. When a large in-plane magnetic field is applied parallel to the 1D channel, such
that the electron spin degeneracy is lifted, conductance plateaux quantised in units of e2=h are
observed [4]. Quantised conductance plateaux in units of 2e2=h at zero magnetic field (e2=h at
high parallel fields) observed in a 1D channel can be well explained by cancellation of the Fermi
velocity and 1D density of states within a single-particle picture.
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In very clean 1D channels a clear plateau-like structure close to (0.7 £ 2e2=h) has been
observed at zero magnetic field B = 0 [5]. This “0.7 structure” whose conductance value is placed
between the spin-degenerate conductance plateau at 2e2=h and the spin-split conductance plateau
at e2=h, cannot be explained within a single-particle picture. The fact that the 0.7 structure
evolves into a (0.5 £ 2e2=h) spin-split conductance plateau on the application of an in-plane
magnetic field suggests the structure is spin related. The 0.7 structure has also been observed in
1D channels with many different sample designs [5-14], establishing that it is a universal effect. In
particular, Kristensen et al. [8, 12] reported activated behaviour of the 0.7 structure as a function
of temperature with a density-dependent activation temperature of around 2 K. Various theoretical
models [15-20] have been proposed to explain the undisputed “0.7 structure”, however, its exact
physical origin remains unknown.

Electrostatically-shaped semiconductor quantum dots with discrete zero-dimensional (0D)
electronic states [21] have been attracting a great deal of theoretical and experimental interest.
Consider a lateral quantum dot weakly coupled to the source and drain contacts where the tun-
nelling conductance through the dot G is low, G ¿ 2e2=h. If the thermal smearing kBT and
the chemical potentials in the leads are much smaller than the Coulomb charging energy e2=C ,
which is required for adding an extra electron to the quantum dot, transport through the dot is
inhibited. This is the Coulomb blockade (CB) of single electron tunnelling [22, 23]. It has been
demonstrated [24] that transport through a small quantum dot is determined by Coulomb charging
effects [25] (quantisation of charge) as well as quantum confinement effects [26, 27] (quantisation
of energy). At present, it is widely accepted that, at zero magnetic field, the conductance 2e2=h
is the upper limit for which Coulomb charging effects can occur [28]. Nevertheless, there is
experimental evidence [29-31] which appears to contradict this concept.

In this paper, we review measurements on clean modulated 1D ballistic channels [32-34].
We have designed a novel 1D channel with three separate and independently contacted overlaying
finger gates. Our device can be operated in two regimes. First, by biasing a single overlaying
finger gate, we are able to vary both the lateral confinement strength and the potential profile
within the 1D channel. In this regime, we find that the 0.7 structure is an intrinsic property of a
clean 1D channel well over the range investigated. Moreover, we shall present clear experimental
evidence that the 0.7 structure is not a transmission effect at zero in-plane magnetic field. Second,
in our system we can also have a strongly modulated 1D channel with double barriers. In this case,
we observe continuous and periodic oscillations superimposed upon ballistic conductance steps at
zero magnetic field. The observed conductance oscillations, when the conductance through the
dot G exceeds 2e2=h, are ascribed to experimental evidence for Coulomb charging effects in an
open quantum dot. The rest of this paper is organised as follows. Section II describes transport
in a modulated 1D channel in which we investigate the “0.7 structure”. Section III presents
measurements on a strongly modulated 1D channel with double barriers in which we observe
evidence for Coulomb charging effects in an open quantum dot device when G is greater than
2e2=h. In Section IV we summarise our experimental results, together with some conclusions.

II. Measurements on a modulated 1D channel

Figure 1(a) shows a schematic diagram of the device configuration. The device was de-
fined by electron beam lithography, 157 nm above the 2DEG. There is a 30 nm-thick layer of
polymethylmethacrylate (PMMA) which has been highly dosed by an electron beam, to act as a
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FIG. 1. (a) Schematic diagram showing the device configuration. The grey regions correspond to finger
gates, labelled as F1, F2, and F3 lying above the split-gate (labelled as SG), with an insulating
layer of crosslinked PMMA in between. (b) G(VSG) for all finger gates at 0 V. The measurement
temperature was 300 mK.

dielectric [35] between the split-gate (SG) and three gate fingers (F1, F2 and F3) so that all
gates can be independently controlled. The carrier concentration of the 2DEG was 1.9 £ 1015

m¡ 2 with a mobility of 250 m2/Vs after brief illumination with a red light emitting diode. The
transport mean free path is 16.5 ¹m, much longer than the effective 1D channel length. The
two-terminal conductance G = dI=dV was measured using an ac excitation voltage of 10 ¹V
with standard phase-sensitive techniques. In all cases, a zero-split-gate-voltage series resistance
(¼ 900 ­ ) is subtracted from the raw data. The in-plane magnetic field Bk is applied parallel to
the source-drain current. Four samples on six different runs showed similar behaviour, and the
data that we present here are obtained from three devices A, B and C.

To demonstrate the high-quality of our 1D channel, figure 1(b) shows the conductance
measurements G(VSG) as a function of split-gate voltage VSG when all finger gate voltages VF1,
VF2 and VF3 are zero at T = 300 mK. We observe conductance plateaux at multiples of 2e2=h,
with no resonant feature superimposed on top, demonstrating that we have a clean 1D channel
in our system in which impurity scattering is negligible. In addition, we also observe the 0.7
structure.

We now describe the effects of applying a negative finger gate voltage VF2. Figure 2(a)
shows G(VSG) for various voltages on F2 while F1 and F3 are at 0 V. The results presented
here are taken at a measurement temperature of 1.2 K, since the 0.7 structure is known to be
more pronounced at higher temperatures [5]. Increasing the negative voltage on F2 decreases the
electron density underneath the finger gate. We use a technique developed by Patel et al. [36] to
measure the energy separation of the 1D subbands from the effects of an applied dc source-drain
voltage Vsd at various VF2 . The results are presented in Fig. 2(b); they have a good linear fit
¢ E1;2 = (0.915 VF2/V+2.71) (meV). It can be seen that as VF2 is made more negative, the
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FIG. 2. (a) G(VSG) for VF2 = 0 to ¡ 1.8 V in 0.3 V steps when VF 1 = VF3 = 0 V. The measurement
temperature was 1.2 K. (b) ¢ E1;2(VF2) (marked by squares) determined by the source-drain bias
technique. The linear fit is discussed in the text.

energy spacing ¢ E1;2(VF2) decreases, giving rise to the reduction in flatness of the conductance
plateaus presented in Fig. 2(a). Using the saddle point model [37], we estimate that the value
!y=!x decreases from 1.1 to 0.6 over the measurement range -0.3 V ¸ VF2 ¸ ¡ 1.8 V. Whilst
the 1D ballistic conductance plateaus are no longer observable, the shoulder-like structure close to
G = (0.7 £ 2e2=h) is observed to persist despite this change in the lateral confinement strength.
The data shown in figure 2(a) provide compelling evidence that the 0.7 structure is intrinsic to a
clean 1D channel and persists over a wide range of lateral confinement strengths.

To demonstrate that the observed shoulder-like structure close to 0.7 £ 2e2=h, where the
conductance steps are not well-quantised and pronounced, has the same physical origin as those
which coexist with well-quantised conductance steps [5], we have measured G(VSG) at various
Bk. As the applied Bk is increased, the shoulder-like feature indeed evolves into a spin-split
(0.5 £ 2e2=h) conductance plateau, as clearly shown in figure 3, in agreement with the early
studies of Thomas et al. [5]. The fact that the structure at (0.7 £ 2e2=h) is not replicated at
0.7£ e2=h when the spin degeneracy is removed at high Bk supports previous results by Thomas
et al. [5].

We now present clear experimental evidence that the 0.7 structure is not a transmission effect
at zero in-plane magnetic field. The solid line in figure 4 shows G(VSG) when VF1 = ¡ 0.22 V,
VF2 = 0 V and VF3 = 0, and the dotted line shows G(VSG) when VF1 = 0 V, VF2 = 0 V and
VF3 = ¡ 0:3 V. In both cases, we observe the 0.7 structure at the same VSG so that the two barriers
underneath the gate fingers are of the same heights. If we now set VF1 = ¡ 0.22 V, VF2 = 0 and
VF3 = ¡ 0.3 V, we obtain the dashed line in figure 4. From the data for VF1 = VF2 = VF3 = 0,
we know that for VSG = ¡ 2.67 V there are two 1D subbands present in the ballistic channel
defined by SG. As illustrated in Fig. 4, the 1D channel pinches off at VSG = ¡ 2.67 V for both
cases when VF1 = ¡ 0.22 V and VF3 = 0, and VF1 = 0 and VF3 = ¡ 0.3 V. The distance between
F1 and F3 is twice as much as the distance between F1 (F3) and the underlying 2DEG. Also the
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FIG. 3. G(VSG) at various applied in-plane
magnetic fields Bk for VF2 = ¡ 1.4 V
and VF1 = VF3 = 0 V. From left to
right: Bk = 0 to 9 T in 1 T steps.
Successive traces have been horizontally
offset by 3 mV for clarity. The measure-
ment temperature was 300 mK.

FIG. 4. The solid line shows G(VSG) when
VF 1 = ¡ 0.22 V, VF2 = 0 V and
VF 3 = 0, and the dotted line shows
G(VSG) when VF1 = 0 V, VF2 = 0
and VF3 = ¡ 0.3 V. The dashed line
shows G(VSG) when VF1 = ¡ 0.22 V,
VF 2 = 0 V and VF3 = ¡ 0.3 V, so that
we have the 0.7 structure present in two
1D channels in series. The measurement
temperature was 1.2 K.

presence of the grounded F2 varies the flow of the electric field lines emitted from F1 and F3,
which makes the 2DEG regions underneath F2 less affected by the fringing fields from F1 and
F3. All these results demonstrate that for VF1 = ¡ 0.22 V, VF2 = 0 and VF3 = ¡ 0.3 V, we have
two narrower 1D constrictions underneath F1 and F3 in series, present in the ballistic channel
defined by SG, as illustrated in Fig. 5. Here we estimate the constriction width underneath F1
(F3), assuming that the lateral (the y component) confining potential in the 1D channel has a form
[37]

U(y) = U(0) +
1

2
m¤!2

yy2; (1)

where m¤ = 0.067 me and me is the electron mass.
From the source-drain biased measurements we know that ¢ E1;2 = 2.434 meV = ~!y . The

difference between the first 1D subband and the conduction band edge is simply 1
2~!y in a simple

harmonic oscillator. Thus we calculate !y to be 3.698 £ 1012 s¡ 1 and U(0) to be 5.78 meV.
The 1D channel width can be estimated when the energy of the first 1D subband crosses the
Fermi energy in the bulk 2DEG (EF = 7 meV). From this we calculate that the constriction width
underneath F1 (F3) at the Fermi energy is 43.3 nm. As shown in Fig. 4, we can see that the 0.7
structure is still observed when the two 1D constrictions are in series but occurs at a slightly
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FIG. 5. A schematic diagram showing that applying negative voltages on F1 and F3 creates two narrower
1D constrictions in series. The dotted lines indicate the depletion regions.

less negative VSG. This is to be expected since two gate fingers are being biased rather than
one and there is a small degree of cross talk between F1 and F3. The ratio of the reduction of
pinch-off voltage to the initial pinch-off voltage is only 0.04/2.65 = 1.5%. If the 0.7 structure were
a transmission effect, then when we have 0.7 structure present in two 1D channels in series, a
shoulder like structure close to 0.7 £ 0.7 = 0.49 (2e2=h) should have been observed. Instead, the
0.7 structure persists and behaves as if it is like two ballistic resistors in series as first studied
by Wharam et al. [38] and reproduced here. Thus our experimental results show that the 0.7
structure is not a transmission effect through a clean one-dimensional channel at zero in-plane
magnetic field.

III. A strongly modulated 1D channel with double barriers: an open quantum dot

Let us turn our attention to the case of a strongly modulated 1D channel with double barriers.
We can define a lateral quantum dot by applying voltages on SG, F1 and F3 while keeping F2
grounded to the 2DEG. The data that we report here was obtained from Device C. Trace 1 in
Fig. 6 shows the gate characteristics G(VSG) for VF1 = ¡ 1.941 V and VF3 = ¡ 1.776 V at T =
50 mK. Periodic and continuous conductance oscillations superimposed on ballistic conductance
steps are observed. We ascribe the observed conductance oscillations for G < 2e2=h to Coulomb
charging effects [39-41]. The observed periodic conductance oscillations for G > 2e2=h are
unexpected and are one of the main subjects of this paper. Unlike lateral quantum dots whose
tunnel barriers are defined by two pairs of split-gates, in our system, the tunnel barriers arise from
depletion from overlying finger gates. This causes a large barrier thickness, so that we do not
observe well-isolated single electron tunnelling peaks beyond pinch-off in our case. In contrast
to the well-quantised conductance plateaux shown in Fig. 1(a), applying voltages to F1 and F3
results in conductance steps that are not as flat or well quantised. With the finger gates grounded
to the 2DEG, the channel pinches-off at VSG = ¡ 1.8 V compared with VSG = ¡ 0.7 V when
VF1 = ¡ 1.941 V and VF3 = ¡ 1.776 V. Thus as voltages are applied to F1 and F3, the lateral
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FIG. 6. G(VSG) for VF1 = ¡ 1.941 V, VF2 =
0 V, and VF 3 = ¡ 1.776 V at various
temperatures T . From left to right: T
= 1, 0.5, 0.45, 0.41, 0.35, 0.3, 0.26,
0.2, 0.18, 0.17, 0.15, 0.11, 0.09, 0.065
and 0.05 K. Curves are successively dis-
placed by a horizontal offset of 0.02 V
for clarity. The data was obtained from
Device C.

FIG. 7. G(VSG) for VF1 = ¡ 1.1 V, VF2 = 0 V,
and VF3 = ¡ 1.0 V.

confinement weakens and the conductance steps become less pronounced. The conductance steps
also deviate from their quantised values. The most likely reason for this effect is due to the
introduction of two tunnel barriers which enhances back-scattering in the channel, thereby reduc-
ing the transmission probability of 1D channels [37] to be less than 1. However, as shown in
Fig. 7, continuous and periodic conductance oscillations are also observed when well-quantised
1D ballistic conductance steps are present. Thus we suggest that the slight deviation from perfect
transmission only varies the background conductance in our system and has little effect on the
observed continuous and periodic conductance oscillations in VSG shown in both Fig. 6 and Fig. 7.

Previously in a lateral quantum dot [39-41] it has been observed that Coulomb oscillations
increase in height and decrease in width as the conductance decreases. This increase in height
arises from an accumulation of the electron wavefunction in the dot, giving rise to resonant
coherent effects as the dot becomes isolated from the source and drain contacts. From figure
6 we can see that no such increase in height is observed in our system as the conductance is
decreased. We believe that the thicker tunnel barriers in our system make it more difficult for the
electrons to tunnel out, so that the electron lifetime within the dot becomes so large it exceeds
the inelastic scattering time. In such a situation resonant coherent effects decrease with the result
that the Coulomb blockade peaks do not increase in height close to pinch-off. We also find that
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the peak widths do not decrease as G decreases. Generally for G > 2e2=h, it is expected that
the presence of a fully transmitted 1D channel might cause mode mixing between 1D channels
in the quantum dot which smears out Coulomb charging effects. However, since our samples
are fabricated on an ultra high-quality HEMT, it is likely that there is little 1D mode mixing, so
that the level broadening for Coulomb oscillations is similar for both cases when G < 2e2=h and
2e2=h < G < 4e2=h. Thus as G decreases, the oscillations observed in our system do not appear
to decrease in width.

Having defined a lateral quantum dot, we now calculate the dot size and the number of
electrons it contains, following the method described in the work by Field and co-workers [42].
For VSG = ¡ 0.5 V, VF1 = ¡ 1.941 V, and VF3 = ¡ 1.776 V, we observe Aharonov-Bohm (AB)
type oscillations as a function of applied perpendicular magnetic field [43] with a period ¢ B of
14.7 mT, giving a dot area A of 2.81 £ 10¡ 13 m2. Using the split-gate to change the dot area at
a constant magnetic field of 0.8 T, the Aharonov-Bohm period [44, 45] of oscillations ¢ V AB

SG is
measured to be 8.772 mV. Thus ¢ V AB

SG /¢ A = 1.70£ 1012 Vm¡ 2 . Each CB oscillation corresponds
to removing an electron from the dot so that the reciprocal of the CB period ¢ N /¢ V CB

SG is 263.3
V¡ 1. From the product of these two terms we obtain the local carrier density in the dot to be
4.47 £ 1014 m¡ 2. Combining this value with the dot area A gives the number of electrons in the
dot N ¼ 126. From the local Fermi energy Eloc

F and the number of electrons within the dot, we
estimate the 0D confinement energy Eloc

F =N to be at most 12.4 ¹eV, comparable to the thermal
smearing at 125 mK. The reason for this is due to the large area of our sample. Therefore electron
transport through our quantum dot can be described in terms of a classical Coulomb charging
picture where the 0D quantum confinement energy is much smaller than the Coulomb charging
energy, similar to the case of a metal.

As shown in Fig. 6, for G < 2e2=h, the conductance oscillations persist up to T = 1 K.
The oscillations for G > 2e2=h have a strong temperature dependence and become unobservable
above T = 410 mK. Note that the thermal broadening kBT at this temperature is still much larger
than the estimated 0D quantum confinement energy, excluding an interpretation that conductance
oscillations for G > 2e2=h are due to tunnelling through 0D states in the quantum dot. To
determine the total capacitance between the dot and the gates of the sample, we measure the
conductance oscillations by varying the voltage on the different gates, while keeping the voltages
on the remaining gates fixed. From this we obtain ¢ VF1 = 23.81 mV, ¢ VF2 = 8.68 mV,
¢ VF3 = 25.89 mV, and ¢ VSG = 3.59 mV. According to this the total gate-dot capacitance Cg

is estimated to be 7.58 £ 10¡ 17 F. Neglecting the capacitance between the dot and the 2DEG
reservoirs, we calculate the Coulomb charging energy e2=Cg to be 0.211 meV, comparable to the
thermal broadening at T ¼ 2 K, which is consistent with the observation that close to pinch-off
Coulomb oscillations persist up to 1 K.

In order to study the unexpected presence of periodic conductance oscillations for G >
2e2=h in more detail, we have measured their dependence on barrier transparency. Figure 8(a)
shows G(VSG) as VF1 and VF3 are simultaneously decreased, thus increasing barrier height (de-
creasing barrier transparency) at zero magnetic field. Figure 8(b) is a continuation of Fig. 8(a) at
even more negative finger gate voltages. We number peaks in G(VSG) counted from pinch-off.
Note that at pinch-off, we estimate that there are still ¼ 70 electrons within the dot. Consider
the sixth single electron tunnelling peak counted from pinch-off. It is evident that as the barrier
heights are raised, by making the gate finger voltages more negative, the peak height decreases,
and the peak occurs at a less negative VSG, i.e., where the channel is wider. Thus, effectively,
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we are keeping the number of electrons within the dot constant while changing the dot shape. We
note that the first ten tunnelling peaks counted from pinch-off in Fig. 8(a) gradually disappear as
the finger gate voltages are made more negative. This is due to the increasing barrier thickness
such that tunnelling conductance becomes immeasurably small [42]. Over the whole measurement
range, we can follow up to 48 conductance tunnelling peaks at various VF1(VF3) and are thus able
to study their barrier transparency dependence. Note that the observed conductance oscillations
for G > 2e2=h have the same period as that of the oscillating features for G < 2e2=h. Most
importantly, as shown in Fig. 8(a) and (b), peaks 31-48, where G > 2e2=h (shown in the upper-
most curve), all gradually evolve into conductance oscillations for G < 2e2=h, due to Coulomb
charging [39-41] as the barrier heights and thickness increase. This result strongly suggests that
the conductance oscillations (for peak 31-48 in the uppermost curve shown in Fig. 8(a)) and the
oscillations shown in the lowermost curves (Fig. 8(b)) are of the same physical origin–Coulomb
charging, compelling experimental evidence for charging effects in the presence of fully transmit-
ted 1D subbands at zero magnetic field.

FIG. 8. (a) G(VSG) at various voltages applied on F1 and F3 at zero magnetic field. From top to bottom:
VF 1 = ¡ 1.907 V to ¡ 1.965 V in 2 mV steps (VF3 = ¡ 1.733 V to ¡ 1.805 V in 2.5 mV
steps) (b) Continuation of figure 3(a). From top to bottom: VF1 = ¡ 1.965 V to ¡ 2.023 V in 2
mV steps (VF3 = ¡ 1.805 V to ¡ 1.8775 V in 2.5 mV steps) Curves are successively offset by
(0.0344)(2e2=h) for clarity. Conductance tunnelling peaks are numbered to serve a guide to the
eye for the evolution of oscillating structures in G(VSG).
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FIG. 9. G(VF2) for VF 1 = ¡ 1.941 V, VSG = ¡ 0.3 V, and VF 3 = ¡ 1.776 V.

Finally we present clear experimental evidence that coherent resonant transport and Coulomb
charging effects co-exist in our system. Figure 9 shows G(VF2) for VF1 = ¡ 1.941 V, VSG =
¡ 0.3 V and VF3 = ¡ 1.776 V when the dot is defined. Periodic and continuous conductance os-
cillations superimposed on weak resonant features are clearly observed. Decreasing VF2 has two
effects. First, it depletes the electrons within the open quantum dot, causing successive conduc-
tance oscillations due to Coulomb charging effects over the whole measurement range. Second, it
also reduces the number of transmitted 1D channels through the dot. The latter effect gives rise
to the slowly-varying background – Fabry-Pérot type resonant effects [46] between the entrance
and exit to the quantum dot. The maxima (minima) in conductance correspond to constructive
(destructive) electron-wave interference effects. This interpretation is further supported by recent
theoretical work of Tkachenko and co-workers [47-49]. Thus in order to model our experimental
results, the co-existence of coherent transport and Coulomb charging effects must be taken into
account.

IV. Conclusions

In conclusion, we have presented low-temperature transport measurements on modulated
one-dimensional channels. We have explicitly shown that the “0.7 structure” is an intrinsic prop-
erty of a clean one-dimensional channel, even when quantised ballistic plateaux are no longer
observable for weak lateral confinement. We have also shown that the 0.7 structure present in two
1D channels in series behaves like a single 1D channel which shows the 0.7 structure, demonstrat-
ing that the 0.7 structure is not a transmission effect through a ballistic channel at zero in-plane
magnetic field.

By strongly modulating the 1D channel with two barriers at either end, periodic and con-
tinuous oscillations superimposed upon ballistic conductance steps are observed even when the
conductance through the quantum dot is greater than 2e2=h. At zero magnetic field, a direct
transition of conductance oscillations for G > 2e2=h to those for G < 2e2=h due to Coulomb
charging effects is observed with decreasing barrier transparencies. The temperature dependence



VOL. 39 C.-T. LIANG, M. PEPPER, ¢¢¢ 543

of the observed oscillating features for G > 2e2=h excludes an interpretation that they are due to
tunnelling through single-particle confinement energy states within the dot. Both results strongly
suggest that, at zero magnetic field, charging effects can occur in the presence of a transmitted
one-dimensional channel, in contrast to the current experimental and theoretical understanding of
Coulomb charging.
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